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Brazil

E-mail: gomes@fisica.ufc.br and renan@fisica.ufc.br

Received 18 August 2004, in final form 25 October 2004
Published 8 December 2004
Online at stacks.iop.org/JPhysA/38/257

Abstract
We analyse local field redefinition and duality for gauge field theories in three
dimensions. We find that both Maxwell–Chern–Simons and the self-dual
models admit the same field redefinition. Maxwell–Proca action and its dual
also share this property. We show explicitly that a gauge-fixing term has no
influence on duality and field redefinition.

PACS numbers: 11.15.−q, 11.10.Kk

1. Introduction

In this paper, we investigate the relationship between duality and field redefinition, in a sense
introduced in [1] and [2], for Maxwell–Chern–Simons and Maxwell–Proca models in three
spacetime dimensions.

It is widely known that a sufficient condition for duality is the existence of a global
symmetry in the original action and one finds the dual model ‘gauging’ this symmetry [3].
The original model is now seen as a gauge-fixed version of its dual model. One secure
prescription for achieving that is ‘gauge embedding’ procedure [4].

This formalism can be used to derive the well-known duality between the self-dual
model (SD) and the Maxwell–Chern–Simons action (MCS) [5]. Some questions are natural
consequences of this fact. The first is whether this duality implies that both models will have
the same field redefinition. The answer is yes, and we prove this. A second question is if
this property holds for some other dual gauge models. To provide an example, we deal with
the Maxwell–Proca action (MP) and its dual to show that they indeed have the same field
redefinition. A more rigorous treatment about this apparent connection between duality and
field redefinition is given in [6].

This paper is organized as follows. In section 2, we prove that the SD and MCS models
have the same field redefinition. Section 3 is devoted to establishing the same fact for MP and
its dual. In the appendix, we detail the rules for functional calculus with differential forms.
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We use the following conventions: the metric adopted is (− + +). We omit the wedge
product symbol ∧ and use the inner product of two p-forms (ωp, ηp) = ∫

ωp ∧∗ ηp. ∗ denotes
the usual duality Hodge operator.

2. Field redefinitions on Maxwell–Chern–Simons and self-dual models

Twenty years ago, Deser and Jackiw [5] established duality between (SD) action

SSD =
∫ (

m2

2
A∗A +

1

2
mA dA

)
= m2

2
(A,A) − m

2
(A,∗ dA), (2.1)

and topologically massive MCS action

SMCS =
∫

1

2
dA∗ dA − m

2
A dA = 1

2
(dA, dA) +

m

2
(A,∗ dA), (2.2)

following the clue that both models involve a massive vectorial field in three dimensions and
violate parity. They derive the duality from a master action. Each model is obtained combining
equations of motion and this master action. This can be also achieved using gauge embedding
formalism [4].

In [1] and [2], Lemes et al showed that the Chern–Simons term can be seen as a generator
for MCS model, through a field redefinition. We set the redefinition for

1

2
(dA, dA) +

m

2
(A, ∗dA) = m

2
(Â, ∗dÂ), (2.3)

where

Â = A +
∞∑
i=1

Ai

mi
. (2.4)

It was shown in [7] that

δAi = 0, (2.5a)

d†Ai = 0, (2.5b)

and that Ai depends linearly on A in the following way:

Ai = αi(∗d)iA. (2.6)

We can also look at field redefinition (2.4) as having an operatorial nature1,

Â = OA, (2.7)

where O is an operator defined by

O =

1 +

∞∑
j=1

αj (∗d)j

mj


 . (2.8)

The operator O has the following properties:

(OA,B) = (A,OB), (2.9a)

[O, ∗d] = 0, (2.9b)

1 Let us comment about a functional formulation with this field redefinition. Since this redefinition is linear, the
functional measure gains a factor which does not depend on the field and hence is factorable from the functional.
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for any 1-forms A and B. So, we can write the field redefinition for the MCS model in the form

1

2
(dA, dA) +

m

2
(A, ∗dA) = m

2
(OA, ∗dOA). (2.10)

Taking the functional derivative with respect to A on both sides of this equation we obtain(∗d

m
− 1 + O2

)
∗dA = 0. (2.11)

Since the operator O depends only on ∗ d, we must have

O2 = 1 − ∗d

m
, (2.12)

and consequently

O2A = A − ∗d

m
A. (2.13)

Integrating with respect to A we get
1
2m2(A,A) − 1

2m(A, ∗dA) = 1
2m2(Â, Â). (2.14)

So the field redefinitions to MCS and its dual SD model are the same and the SD model can
be reset in a pure mass-like term. From (2.12) we can obtain the form of the operator O by
expansion in power series in ∗d/m

O = 1 −
∞∑

j=1

(2j)!

22j (2j − 1)(j !)2

(∗d

m

)j

. (2.15)

Comparing (2.7) and (2.15), we find out a formula for the coefficients αj

αj = − (2j)!

22j (2j − 1)(j !)2
, (2.16)

that furnishes the same coefficients found in [8].
We can directly invert the field redefinition

A = O−1Â, (2.17)

with

O−1 =
(

1 − ∗d

m

)−1/2

=
∞∑

k=0

(2k)!

22k(k!)2

(∗d

m

)k

, (2.18)

that are also in complete agreement with those in [8].
The series expansion

(1 + x)1/2 =
∞∑

j=1

(−1)jαjx
j , (2.19)

converges only for |x| < 1 and x = 1, but this is not a problem since one can easily extend
the convergence for other intervals by analytic continuation.

We can change our way of thinking and consider (2.11) had been obtained from (2.13)
after application of ∗d. Thus redefined MCS is generated by the redefined SD model, both
presenting the same field redefinition. One can reasonably argue what would one get applying
∗d twice on (2.13) and integrating on field A. We obtain a new gauge invariant model

−1

2
(dA, d ∗ dA) +

m

2
(dA, dA) = m

2
(dÂ, dÂ). (2.20)
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By construction the field redefinition of (2.20) is exactly that for the SD and MCS models. In
fact, these models belong to a same equivalence class [6].

An interesting point is that adding a gauge-fixing term to the SD model has no influence
on field redefinition since it does not spoil duality. Consider the self-dual model plus a Landau
gauge, fixing term

S(0) =
∫ (

m2

2
AµAµ +

α

2
(∂µAµ)2 − m

2
εµνρA

ρ∂µAν

)
d3x. (2.21)

Following the gauge embedding prescription [4], the first iterative action is

S(1) = S(0) −
∫

(m2Aµ − α∂µ(∂A) − mεµνρ∂
νAρ)Bµ d3x, (2.22)

and it follows that

δS(1) = −δ

∫
m2

2
BµBµ d3x − δ

∫
α

2
(∂µBµ)2 d3x. (2.23)

Then, the invariant action is

S(2) = S(1) +
∫ (

m2

2
BµBµ +

α

2
(∂µBµ)2

)
d3x. (2.24)

The equation of motion for Bµ shows that ∂µBµ = ∂µAµ and m2Bµ = m2Aµ − mεµνρ∂
νAρ .

This points to the Maxwell–Chern–Simons as being the dual model no matter what the gauge-
fixing term is.

3. Field redefinitions on Maxwell–Proca and its dual

Another model which shares the same field redefinition with its dual is MP,

SMP = m2

2
(A,A) − 1

2
(∗dA, ∗dA) = m2

2
(A, (1 − (∗d/m)2)A). (3.1)

We can find its dual following the gauge embedding procedure:

Sdual–MP = 1

2
(∗dA, ∗dA) − 1

2m2
(∗d ∗dA, ∗d ∗dA). (3.2)

Just like the SD model, MP can be redefined to a pure mass-like term, namely

SMP = m2

2
(Â, Â) = m2

2
(OA,OA), (3.3)

where O also satisfies properties (2.9). From (3.1) and (3.3), we see that O is nothing but

O = (1 − (∗d/m)2)1/2. (3.4)

Repeating the steps in section 2, we are left with

[O2 − 1 +

(∗d

m

)2

]A = 0. (3.5)

Applying (∗d)2 and integrating in A:

Sdual–MP = 1

2
(∗dA, ∗dA) − 1

2m2
(∗d ∗ dA, ∗d ∗ dA) = 1

2
(∗dÂ, ∗dÂ). (3.6)

Observe that applying ∗d in (3.5) and integrating, one gets another theory with same field
redefinition as MP that is not its dual. We clear this point in [6].
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4. Conclusion

In this work, we analysed the aspects of field redefinition and duality of gauge theories in
three dimensions. We showed that the MCS and SD models can be rewritten as a unique term
with the same field redefinition. Indeed, both models are members of a equivalence class of
gauge theories. Let us remark that such a redefinition is local and has a closed expression in
operator ∗d, e.g, see equation (2.12). The expansion in power of ∗d is formal and only makes
sense when operating on a gauge field. Our results clarify some aspects of duality in three
dimensions. In this approach, the gauge-fixing term drops out the dual theory.
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Appendix. Functional calculus with differential forms

We start by defining the functional derivative of a p-form A(x). Let the inner product of two
p-forms be given by

(A,B) =
∫

A(x) ∗ B(x) =
∫

1

p!
A(x)µ1..µp

B(x)µ1..µp dDx, (A.1)

where we are considering a flat manifold. Taking the functional derivative with respect to
A(y)ν1..νp

on both sides of (A.1), one gets

δ

δA(y)ν1..νp

(A,B) = B(y)ν1..νp . (A.2)

Then we define the functional derivative of a p-form A(x) as

δ

δA(y)
(A,B) = B(y). (A.3)

We also define the Dirac delta p-form
(
δD
p (x − y), B(x)

) = B(y), (A.4)

then

δA(x)

δA(y)
= δD

p (x − y). (A.5)

From definition (A.4), we can get the explicit form of δD
p (x − y) in terms of the usual Dirac

delta function:

δD
p (x − y) = 1

p!
δD(x − y)gµ1ν1 ..gµpνp

dxµ1 ∧ · · · ∧ dxµp ⊗ dyν1 ∧ · · · ∧ dyνp . (A.6)

Clearly, δD
0 (x − y) = δD(x − y). Note that a p-form is defined in a point of the co-tangent

space, therefore two p-forms in different points always commute since they are defined in
different co-tangent spaces, i.e., B(x)B(y) = B(y)B(x).
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